SYNTHESIS OF 5-ARYLAZO-2,4-DITHIOHYDANTOINS

T. V. Perova

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 5, 806-807, 1968

UDC 547.783.9.07:542.945.2

It was shown that during the interaction between 2-thiohydantoin and P_2S_5 in dioxane 2,4-dithiohydantoin (I) is formed, and without isolation from the reaction solution this compound forms 5-arylazo-2,4-dithiohydantoins (II-XI) with salts of diazone. The structure of two of these compounds has been determined by countersynthesis. When 5-arylazo-2,4-dithiohydantoins interact with amines the corresponding 4-substituted derivatives are formed.

Previously it has been shown [1] that 2-thiohydantoin combines with diazonium salts in pyridine to form the 5-substitutes.

As substitution of the C=O group by the C=S group in pyrrolidones-4 and their derivatives strongly activates position 5 [2] and leads to an increase in color intensity [3], we studied the possibility of synthesizing dithiohydantoin dyes. Although individual derivatives of compound I were obtained and examined as medicinal remedies [4], there is no description of the unsubstituted compound I in the literature. Attempts to obtain compound I from 2-thiohydantoin in dioxane [2] showed that a good yield of this substance is formed under the given conditions although it cannot be isolated. However, on account of the high activity of compound I it is possible to conduct azo-combination with isolation of the substance. One should note that under the given conditions 2-thiohydantoin does not combine.

Compounds II-XI are highly colored and readily soluble in organic solvents. Their structures were de-

termined by countersynthesis involving the interaction between arylazo-2-thiohydantoins and P_2S_5 in dioxane. This transformation was only achieved in the case of o-carboxyphenyl- and n-ethoxyphenylazo-2-thiohydantoin.

In compounds II-XI the C=S group in position 4 is distinguished by its distinct thioketone nature, which has been found for unsubstituted 4-thionpyrrolidones [2]. On interaction with aniline, hydrogen sulfide is evolved and the corresponding 4-phenylimino-5-aryl-azosubstitutes of compound I were formed according to the reaction:

EXPERIMENTAL

2,4-Dithiohydantoin (I). A 2.32 g quantity (0.02 mole) of 2-thiohydantoin, 2.5 g P_2S_5 , and 25 ml of anhydrous freshly distilled dioxane were boiled for 50 min with a reflux condenser, after which the hot solution was filtered, cooled, and immediately used for the synthesis of 5-arylazo-2,4-dithiohydantoins.

5-(o-Carboxyphenylazo)-2,4-dithiohydantoin (V). a) A 0.02 mole quantity of diazotized anthranilic acid was added to a dioxane solution of compound I, cooled to 0° C by the addition of 10 g of ice. The resulting red solution was held at 0° and then diluted with acidified water. The precipitate was removed by filtration and washed with water. Yield, 2.1 g (37%). It was crystallized from methanol.

b) A 0.01 mole quantity of 5-(o-carboxyphenylazo)-2-thiohydantoin [1] was dissolved by heating in 50 ml dioxane. To the hot solution was added 1.0 g of sublimated P_2S_5 . The mixture was boiled in a reflux condenser for 45 min, after which the hot dark-red solution was filtered and cooled. The precipitated crystals were separated and washed with dioxane. The yield was 2.2 g (78%). The compound ob-

punoduo	R	Color	Mp,* °C (decomp.)	Empirical formula	Found, %		Calculated,		ield, %
<u>చ</u>							· · · ·		×
Н	C_6H_5	Dark-red	208-209	$C_9H_8N_4S_2$	23.17	27.49	23.70	27.23	12
III IV	n-HO-С6H4 n-C2H5O-С6H4	Black Greenish-black	209—210 203—204	C9H8ON4S2 C11H12ON4S2	21.84 19.48	25.76 22.56	22.20 19.98	$\begin{array}{c} 25.42\\ 22.88 \end{array}$	$\frac{22}{22.4}$
v	<i>о</i> -НООС-С ₆ Н₄	Light-red	255—256	$C_{10}H_8O_2N_4S_2$	20.13	22.63	19.98	20.80	36
VI	<i>n</i> -HOOC-C ₆ H ₄	Dark-red	above 350	$C_{10}H_8O_2N_4S_2$	19.59	22.50	19.98	22.80	24
VII VIII IX	м-HOOC-C ₆ H ₄ o-H ₂ O ₃ As-C ₆ H ₄ n-H ₂ O ₃ As-C ₆ H ₄	Red Yellow Red-orange	259260 209210 above 350	C ₁₀ H ₈ O ₂ N ₄ S ₂ C ₉ H ₉ O ₃ N ₄ S ₂ As C ₉ H ₉ O ₃ N ₄ S ₂ As	19.54 15.83 15.07	22.97	19.98 15.55 15.55	22.80	11 42 20
Х	$n-C_6H_5-N-N-C_6H_4$	Dark-brown	235—236	$C_{15}H_{12}N_{6}S_{2}$	27.49	22.07	27.97	21.34	12
XI	β-C ₁₀ H ₇	Red-brown	214—215	C ₁₃ H ₁₀ N ₄ S ₂	19.23	22.44	19.56	22.39	26

5-Arylazo-2,4-dithiohydantoins (II-XI)

*II, III, from dichlorethane; IV, from butanol; V, VI, from methanol; VIII, IX, from ethanol; VII, X, XI, two-fold reprecipitation with water from dimethylformamide.

tained was found to be identical to compound V obtained by method (a).

Compounds II-IV and VI-XI were obtained in an analogous manner.

4-Phenylimido-5-phenylazo-2-thiohydantoin. A 2.3 g quantity (0.01 mole) of compound II, 1.2 g (0.013 mole) of aniline, and 20 ml of methanol were boiled in a reflux condenser for 2 hr 30 min. After the evolution of hydrogen sulfide a clear red-orange crystalline precipitate was formed Yield = 1.7 g (58%). Recrystallization from methanol produces fine yellow needles, mp 259°-260° C (decomp.). Found, %: N 23.56; S 11.12. Calculated for $C_{15}H_{13}N_5S$, %: N 23.71; S 10.85.

In an analogous manner 4-phenylimino-5-(n-carboxyphenylazo)-2-thiohydantoin was obtained from compound VI and aniline. Yield, 65%. Small red-orange needles, mp 263°-265° C (decomp., methanol). Found, %: N 20.99; S 8.96. Calculated for $C_{16}H_{13}O_2N_5S$, %: N 20.63; S 9.44.

REFERENCES

1. S. N. Baranov and T. V. Perova, KhGS [Chemistry of Heterocyclic Compounds], 326, 1967.

2. A. P. Grishchuk, KhGS [Chemistry of Heterocyclic Compounds], 372, 1966.

3. A. E. Shott-L'vova, et al., DAN 145, 1321, 19 1962.

4. I. Cheymo, P. Chabrier, F. Bourillet, and C. Levassort, J. Physiol. 46, 294, 1954; RZhKh, BKh 4, 4027, 1956.

4 June 1966

L'vov Medical Institute